

PII: S0960-894X(96)00371-X

Synthesis of All Possible Regioisomers of myo-Inositol Pentakisphosphate

Sung-Kee Chung* and Young-Tae Chang

Department of chemistry, Pohang University of Science & Technology, Pohang 790-784, KOREA

Abstract: Synthesis of all possible 4 regioisomers of IP₃, naturally occurring metabolites of IP₃ and IP₄, was accomplished from myo-inositol via its monobenzoate derivatives (IBz₁) as the key intermediates; base-catalyzed isomerization of readily available IBz₁ derivatives, followed by suitable separation procedures efficiently provided the requisite regioisomers of IBz₁. Copyright © 1996 Elsevier Science Ltd

Since the discovery that D-myo-inositol-1,4,5-trisphosphate[I(1,4,5)P₃] plays a pivotal role as a second messenger in the transmembrane signalling, thus mobilizing calcium ions from the intracellular storage, its interaction with I(1,4,5)P₃ receptors and the metabolism of IP₃ were widely studied. One of the major metabolic pathways involves a specific phosphorylation of I(1,4,5)P₄ to I(1,3,4,5)P₄, and it has been suggested that I(1,3,4,5)P₄ also acts as a second messenger mediating the entry of extracelluar Ca²⁺ through plasma membrane ion channel.² Although IP_ss have been recognized for some time as naturally occurring metabolites of IP3 and IP4 studies on their metabolism and possible functional roles are currently in progress. For example, I(1,3,4,5,6)P₅ was shown to have a potent inhibitory activity toward I(1,3,4,5)P₄ 3-phosphatase, which is a key enzyme in the regeneration of the second messenger I(1,4,5)P₃ from $I(1,3,4,5)P_4$ $I(1,3,4,5,6)P_5$ was also found to inhibit the $I(1,3,4,5)P_4$ binding to the purified putative I(1,3,4,5)P₄ binding protein with an IC₅₀ close to that of I(1,3,4,5)P₄ itself.⁴ There exist four possible IP₅ regioisomers: two meso compounds, and two pairs of enantiomers. Surprisingly, efficient synthetic procedures for all IPs have not yet been worked out. The syntheses of I(1,2,4,5,6)Ps and I(1,2,3,4,5)Ps based on the old phosphorylation method were reported by Angyal and Russel.⁵ More recently, I(1,3,4,5,6)P_s was prepared by Ozaki, et al.⁶ Systematic understanding on the relationship between the structure of IP, and the biolgical function of the metabolic enzymes would be greatly facilitated by the ready availability of all IP, regioisomers. Here we report the total synthesis of all possible 4 regioisomers of IP, s using inositol monobenzoates (IBz₁) as the key intermediates.

One of the key problems in the synthesis of inositol phosphates is to prepare suitable, selectively protected inositol intermediates. We have previously reported synthesis of all possible regioisomers of IP₄ and IP₃ through IBz₂ and IBz₃,⁷ which were obtained by the benzoyl group migration among the vicinal hydroxyl groups of the *myo*-inositol structure.⁸ Based on the same synthetic strategy, now the benzoyl migration technique was applied to generate the 4 regioisomers of *myo*-inositol monobenzoate (IBz₁), 1, which were expected to be phosphorylated to provide the 4 regioisomers of the target IP₅ structure, 2 (Scheme 1).

Scheme 1. i) diethyl chlorophosphite(30 eq.), diisopropylethylamine, DMF, - 42 °C — 25 °C, 3day; ii) hydrogen peroxide(30 %), sodium phosphate buffer(1.0 M, pH 7), 0 °C (40-60 % overall yield from 1); iii) bromotrimethylsilane, dichloromethane, 25 °C, 3 day; iv) 1M LiOH, 80 °C, 3h; v) Dowex 50x8-100(H*). Benzoic acid produced was extracted out with dichloromethane; vi) pH adjusted to 10 (80-99 % overall yield from 2).

Thus, compound 4, prepared from myo-inositol, was partially hydrolyzed with NaOMe in MeOH-acetone to give a mixture of the monobenzoate derivatives (5a and 5c). Without separation, this mixture was subjected to the migration conditions (60 % aqueous pyridine, 100 °C, 1h) and then each regioisomer (5a, 5c, 5d, 5c') was easily separated by silica gel column chromatography (eluted with ethyl acetate-hexane gradients). The hydrolysis of the monoacetal protecting group of 5 in 80 % aqueous acetic acid at reflux gave three (1a, 1c, 1d) of four IBz, regioisomers (Scheme 2).

Scheme 2. i) NaOMe, MeOH-acetone(1:10), 15 min, IBz, mixture(72%), S.M.(12%), tetraol(15%); ii) pyridine-water(6:4), 100 °C, 1h (5a 26%, 5c 23%, 5d 31%, 5c' 20%), followed by silica-gel column chromatography; iii) 80% aq. AcOH, reflux, 30 min, 100%.

The remaining regioisomer (1b) of IBz₁ could not be obtained this way and had to be independently prepared from myo-inositol orthoformate 6 (Scheme 3). A selective monobenzoylation at the 2-OH group of

compound 6, derived from *myo*-inositol, ¹⁰ was effected under the usual conditions employing BzCl in pyridine to give 7,6 while a preferential alkylation at 4- or 6-OH has been reported under the conditions using an alkyl halide and a metal hydride base. ¹¹ Acid-catalysed hydrolysis of 7 gave 1b in quantitative yield. Each of the 4 regioisomers of IBz₁ thus obtained was fully characterised by ¹H, ¹³C NMR including H-H COSY, and mass (FAB) spectrometry. ¹²

Scheme 3. i) BzCl(1 eq.), pyridine, r.t., 60%; ii) HCl, MeOH, r.t., 100%

Each IBz₁ isomer was separately phosphorylated by successive treatments with diethyl chlorophosphite and N,N-diisopropylethylamine in DMF, and then 30 % hydrogen peroxide to yield all 4 regioisomers of compound 2 (Scheme 1), which were thoroughly characterized by ¹H, ¹³C and ³¹P NMR.¹³ However, it is to be noted that the phosphorylation yields (40-60 %) were generally not as good as in the cases for IP₃ and IP₄ (80-99 %)⁷ even with a large excess amount of phophorylating agent and a longer reaction time (3 days), perhaps due to the unfavorable steric hindrances between the vicinal phosphate groups. Therefore, each protected IP₅ isomer 2 had to be purified by column chromatography. In the final steps, the protecting groups of 2 were removed by successive reactions with trimethylsilyl bromide and then LiOH. Cleavage of the ethyl phosphate esters was monitored by ³¹P-NMR, which clearly showed upfield chemical shift changes of 10-20 ppm upon the conversion of the ethyl ester to the silyl ester.¹⁴ Each regioisomers of the product (3) was obtained after ion exchange chromatography on Dowex 50x8-100 (H⁺ form), pH adjustment to 10 with NaOH, and lyophilization.¹⁵ Biological studies on the IP₅ isomers are currently in progress.

It is to be stressed that the group migration method in conjuction with some efficient separational techniques as delineated here as well as in the previous reports⁷ has proven to be a very useful and general synthetic strategy to generate a diverse molecular array of the inositol and carbohydrate isomers, which would be necessary for the determination of structural specificities in their reactions with biological macromolecules such as receptors, enzymes and antibodies. The syntheses of the optically active versions of IP_n isomers by the group migration method are also in progress.

ACKNOWLEDGMENT. We wish to thank Korea Science & Engineering Foundation/Center for Biofunctional Molecules and the Ministry of Education/Basic Science Research Institute Program for the financial support of this work.

REFERENCES AND NOTES

- a) Shears, S. B. Biochem. J. 1989, 260, 313-324; b) Berridge, M. J. Nature(London) 1993, 361, 315-325.
- 2. Irvine, R. F.; Cullen, P. J. Current Biology 1993, 3, 540-543.
- 3. Hughes, P. J.; Shears, S. B. J. Biol. Chem. 1990, 265, 9869-9875.
- 4. Donie, F.; Reiser, G. Biochem. J., 1991, 275, 453-457.
- 5. Angyal, S. J.; Russell, A. F. Aust. J. Chem. 1968, 21, 391-404.
- Ozaki, S.; Koga, Y.; Ling, L.; Watanabe, Y.; Kimura, Y.; Hirata, M. Bull. Chem. Soc. Jpn. 1994, 67, 1058-1063.
- a) Chung, S. K.; Chang, Y. T. J. Chem. Soc., Chem. Commun. 1995, 11-12; b) Chung, S. K.; Chang,
 Y. T.; Sohn, K. H. J. Chem. Soc., Chem. Commun. 1996, 163-164.
- 8. Chung, S. K.; Chang, Y. T. J. Chem. Soc., Chem. Commun. 1995, 13-14.
- The increasing order of R_f values on SiO₂ TLC (ethyl acetate-hexane 2:1, three times) is 5c (0.10),
 5a (0.15), 5d (0.25), 5c¹ (0.3). All isomers are crystalline solids and their melting points are 5c (183-184 °C), 5a (209-211 °C), 5d (205-208 °C), 5c¹ (158-161 °C).
- 10. Andersch, P; Schneider, M. P. Tetrahedron: Asymmetry 1993, 4, 2135-2138.
- 11. Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I.; Vacca, J. P.; deSolms, S. J.; Huff, J. R. J. Chem. Soc., Perkin Trans. 1, 1989, 1423-1429.
- 12. The melting points and 1 H-NMR data (CD₃OD) for the ring protons in IBz (1) are as follows. 1a. 219-220 °C; δ 3.26 (t, J = 9.1 Hz, 1H, H-5), 3.41 (dd, J = 2.7, 9.7 Hz, 1H, H-3), 3.60 (dd, J = 9.1, 9.7 Hz, 1H, H-4), 3.91 (dd, J = 9.1, 10.2 Hz, 1H, H-6), 4.10 (t, J = 2.7 Hz, 1H, H-2), 4.80 (dd, J = 2.7, 10.2 Hz, 1H, H-1). 1b. 240-242 °C; δ 3.30 (t, J = 8.9 Hz, 1H, H-5), 3.66 (dd, J = 2.6, 9.7 Hz, 2H, H-1 & H-3), 3.73 (dd, J = 8.9, 9.7 Hz, 2H, H-4 & H-6), 5.69 (t, J = 2.6 Hz, 1H, H-2). 1c. 208-210 °C; δ 3.46 (dd, J = 2.7, 9.7 Hz, 1H, H-1), 3.49 (t, J = 9.5 Hz, 1H, H-5), 3.71 (dd, J = 2.7, 10.0 Hz, 1H, H-3), 3.78 (dd, J = 9.5, 9.7 Hz, 1H, H-6), 4.04 (t, J = 2.7 Hz, 1H, H-2), 5.45 (app t, J = 9.8 Hz, 1H, H-4). 1d. 238-240 °C; δ 3.52 (dd, J = 2.8, 9.8 Hz, 2H, H-1 & H-3), 3.91 (app t, J = 9.7 Hz, 2H, H-4 & H-6), 4.05 (t, J = 2.8 Hz, 1H, H-2), 5.04 (t, J = 9.6 Hz, 1H, H-5).
- 13. ³¹P-NMR data (CDCl₃) for IBz₁(PO₃Et₂)₅ (2) are as follows(85 % H₃PO₄ as the reference standard).
 2a. δ 0.26 (2P), 0.46, 0.82, 1.06. 2b. δ 0.46 (2P), 0.61 (3P). 2c. δ -0.11, 0.08, 0.67, 1.32 (2P). 2d. δ -0.18, 0.61 (2P), 1.45 (2P).
- 14. McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. Tetraheron Lett. 1977, 18, 155-158.
- 15. ${}^{31}\text{P-NMR}$ data (D₂O, pH 10) for IP₅(3) are as follows (85 % H₃PO₄ as the reference standard). 3a. δ 6.07, 6.20, 6.54, 6.77, 7.22. 3b. δ 5.98 (2P), 6.35, 6.83 (2P). 3c. δ 6.05 (2P), 6.75, 7.13, 7.27. 3d. δ 6.00, 6.92 (2P), 7.90 (2P).